Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
World J Oncol ; 15(2): 149-168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545477

RESUMO

Pigs are playing an increasingly vital role as translational biomedical models for studying human pathophysiology. The annotation of the pig genome was a huge step forward in translatability of pigs as a biomedical model for various human diseases. Similarities between humans and pigs in terms of anatomy, physiology, genetics, and immunology have allowed pigs to become a comprehensive preclinical model for human diseases. With a diverse range, from craniofacial and ophthalmology to reproduction, wound healing, musculoskeletal, and cancer, pigs have provided a seminal understanding of human pathophysiology. This review focuses on the current research using pigs as preclinical models for cancer research and highlights the strengths and opportunities for studying various human cancers.

2.
Cancers (Basel) ; 16(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38398206

RESUMO

Circulating tumor cells (CTCs) are cancer cells that slough off from the tumor and circulate in the peripheral blood and lymphatic system as micro metastases that eventually results in macro metastases. Through a simple blood draw, sensitive CTC detection from clinical samples has proven to be a useful tool for determining the prognosis of cancer. Recent technological developments now make it possible to detect CTCs reliably and repeatedly from a simple and straightforward blood test. Multicenter trials to assess the clinical value of CTCs have demonstrated the prognostic value of these cancer cells. Studies on CTCs have filled huge knowledge gap in understanding the process of metastasis since their identification in the late 19th century. However, these rare cancer cells have not been regularly used to tailor precision medicine and or identify novel druggable targets. In this review, we have attempted to summarize the milestones of CTC-based research from the time of identification to molecular characterization. Additionally, the need for a paradigm shift in dissecting these seeds of metastasis and the possible future avenues to improve CTC-based discoveries are also discussed.

3.
Trends Cancer ; 10(3): 182-184, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290969

RESUMO

Cancer remains a leading cause of morbidity and mortality, and a paradigm shift is needed to fundamentally revisit drug development efforts. Pigs share close similarities to humans and may serve as an alternative model. Recently, a transgenic 'Oncopig' line has been generated to induce solid tumors with organ specificity, opening the potential of Oncopigs as a platform for developing novel therapeutic regimens.


Assuntos
Neoplasias , Animais , Suínos , Humanos , Modelos Animais de Doenças , Animais Geneticamente Modificados , Neoplasias/tratamento farmacológico , Neoplasias/genética
4.
Trends Cancer ; 9(4): 355-371, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36759267

RESUMO

Circulating tumor cells (CTCs) that are detached from the tumor can be precursors of metastasis. The majority of studies focus on enumeration of CTCs from patient blood to predict recurrence and therapy outcomes. Very few studies have managed to expand CTCs to investigate their functional dynamics with respect to genetic changes, tumorigenic potential, and response to drug treatment. A growing amount of evidence based on successful CTC expansion has revealed novel therapeutic targets that are associated with the process of metastasis. In this review, we summarize the successes, challenges, and limitations that collectively contribute to the better understanding of metastasis using patient-derived CTCs as blood-borne seeds of metastasis. The roadblocks and future avenues to move CTC-based scientific discoveries forward are also discussed.


Assuntos
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais , Carcinogênese
5.
Nat Commun ; 14(1): 228, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646715

RESUMO

The interplay between western diet and gut microbiota drives the development of non-alcoholic fatty liver disease and its progression to non-alcoholic steatohepatitis. However, the specific microbial and metabolic mediators contributing to non-alcoholic steatohepatitis remain to be identified. Here, a choline-low high-fat and high-sugar diet, representing a typical western diet, named CL-HFS, successfully induces male mouse non-alcoholic steatohepatitis with some features of the human disease, such as hepatic inflammation, steatosis, and fibrosis. Metataxonomic and metabolomic studies identify Blautia producta and 2-oleoylglycerol as clinically relevant bacterial and metabolic mediators contributing to CL-HFS-induced non-alcoholic steatohepatitis. In vivo studies validate that both Blautia producta and 2-oleoylglycerol promote liver inflammation and hepatic fibrosis in normal diet- or CL-HFS-fed mice. Cellular and molecular studies reveal that the GPR119/TAK1/NF-κB/TGF-ß1 signaling pathway mediates 2-oleoylglycerol-induced macrophage priming and subsequent hepatic stellate cell activation. These findings advance our understanding of non-alcoholic steatohepatitis pathogenesis and provide targets for developing microbiome/metabolite-based therapeutic strategies against non-alcoholic steatohepatitis.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Inflamação/patologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
6.
Cancers (Basel) ; 14(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36497286

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. Although immunotherapy has shown potential in TNBC patients, clinical studies have only demonstrated a modest response. Therefore, the exploration of immunotherapy in combination with chemotherapy is warranted. In this project we identified immune-related gene signatures for TNBC patients that may explain differences in patients' outcomes after anti-PD-L1+chemotherapy treatment. First, we ran the exploratory subgroup discovery algorithm on the TNBC dataset comprised of 422 patients across 24 studies. Secondly, we narrowed down the search to twelve homogenous subgroups based on tumor mutational burden (TMB, low or high), relapse status (disease-free or recurred), tumor cellularity (high, low and moderate), menopausal status (pre- or post) and tumor stage (I, II and III). For each subgroup we identified a union of the top 10% of genotypic patterns. Furthermore, we employed a multinomial regression model to predict significant genotypic patterns that would be linked to partial remission after anti-PD-L1+chemotherapy treatment. Finally, we uncovered distinct immune cell populations (T-cells, B-cells, Myeloid, NK-cells) for TNBC patients with various treatment outcomes. CD4-Tn-LEF1 and CD4-CXCL13 T-cells were linked to partial remission on anti-PD-L1+chemotherapy treatment. Our informatics pipeline may help to select better responders to chemoimmunotherapy, as well as pinpoint the underlying mechanisms of drug resistance in TNBC patients at single-cell resolution.

7.
Cancers (Basel) ; 14(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36230517

RESUMO

Cytotoxic T lymphocyte (CTL) infiltration is associated with survival, recurrence, and therapeutic response in colorectal cancer (CRC). Immune checkpoint inhibitor (ICI) therapy, which requires CTLs for response, does not work for most CRC patients. Therefore, it is critical to improve our understanding of immune resistance in this disease. We utilized 2391 CRC patients and 7 omics datasets, integrating clinical and genomic data to determine how DNA methylation may impact survival and CTL function in CRC. Using comprehensive molecular subtype (CMS) 1 patients as reference, we found TBX21 to be the only gene with altered expression and methylation that was associated with CTL infiltration. We found that CMS1 patients with high TBX21 expression and low methylation had a significant survival advantage. To confirm the role of Tbx21 in CTL function, we utilized scRNAseq data, demonstrating the association of TBX21 with markers of enhanced CTL function. Further analysis using pathway enrichment found that the genes TBX21, MX1, and SP140 had altered expression and methylation, suggesting that the TP53/P53 pathway may modify TBX21 methylation to upregulate TBX21 expression. Together, this suggests that targeting epigenetic modification more specifically for therapy and patient stratification may provide improved outcomes in CRC.

8.
Cancer Genet ; 268-269: 75-82, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191390

RESUMO

Rural non-small cell lung cancer (NSCLC) patients do worse, largely related to lack of access to care. In this study, the mutational characteristics and potential for targeted therapy in rural, resectable NSCLC patients using whole exome sequencing (WES) were analyzed. WES was performed on tumor-adjacent normal pairs from rural patients undergoing resection for NSCLC. Sequencing alignment, variant-calling, annotation, and tumor mutational burden (TMB) calculations were performed using standard methods. cBioportal and OncoKB were used for comparisons of mutational frequencies and actionable targets. Thirty-four NSCLC patients underwent WES after surgical resection. The gene most frequently containing somatic variants was TP53. The median number of somatic variants was 188 (Range 11-1056), and median TMB was 3.30 (0.33-18.56) nonsynonymous mutations per Mb. Tumor stage and survival were not associated with number of variants, TMB or TP53 mutational status. Significant concordance among the most common mutations when cross-referenced to cBioportal (R = 0.78, p < 0.0001) was observed. 24% of patients had variants in actionable genes based on OncoKB annotation. In summary, we demonstrate baseline mutational frequency and establish foundations for targeted adjuvant trials in rural NSCLC patients with specific differences. Future studies must ensure to include rural patients to improve NSCLC patient outcomes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirurgia , Mutação , Sequenciamento do Exoma/métodos , População Rural
9.
Curr Issues Mol Biol ; 44(2): 750-763, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35723337

RESUMO

Non-small-cell lung cancer (NSCLC) accounts for most cancer-related deaths worldwide. Liquid biopsy by a blood draw to detect circulating tumor cells (CTCs) is a tool for molecular profiling of cancer using single-cell and next-generation sequencing (NGS) technologies. The aim of the study was to identify somatic variants in single CTCs isolated from NSCLC patients by targeted NGS. Thirty-one subjects (20 NSCLC patients, 11 smokers without cancer) were enrolled for blood draws (7.5 mL). CTCs were identified by immunofluorescence, individually retrieved, and DNA-extracted. Targeted NGS was performed to detect somatic variants (single-nucleotide variants (SNVs) and insertions/deletions (Indels)) across 65 oncogenes and tumor suppressor genes. Cancer-associated variants were classified using OncoKB database. NSCLC patients had significantly higher CTC counts than control smokers (p = 0.0132; Mann-Whitney test). Analyzing 23 CTCs and 13 white blood cells across seven patients revealed a total of 644 somatic variants that occurred in all CTCs within the same subject, ranging from 1 to 137 per patient. The highest number of variants detected in ≥1 CTC within a patient was 441. A total of 18/65 (27.7%) genes were highly mutated. Mutations with oncogenic impact were identified in functional domains of seven oncogenes/tumor suppressor genes (NF1, PTCH1, TP53, SMARCB1, SMAD4, KRAS, and ERBB2). Single CTC-targeted NGS detects heterogeneous and shared mutational signatures within and between NSCLC patients. CTC single-cell genomics have potential for integration in NSCLC precision oncology.

10.
JCO Precis Oncol ; 6: e2100378, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35417204

RESUMO

PURPOSE: Low-dose computed tomography (LDCT) screening of high-risk patients decreases lung cancer-related mortality. However, high false-positive rates associated with LDCT result in unnecessary interventions. To distinguish non-small-cell lung cancer (NSCLC) from benign nodules, in the present study, we integrated cellular liquid biomarkers in patients with suspicious lung nodules (lung cancer screening reporting and data system [Lung-RADS] 4). METHODS: Prospectively, 7.5 mL of blood was collected from 221 individuals (training set: 90 nonscreened NSCLC patients, 74 high-risk screening patients with no/benign nodules [Lung-RADS 1-3], and 20 never smokers; validation set: 37 patients with suspicious nodules [Lung-RADS 4]). Circulating tumor cells (CTCs), CTC clusters, and tumor-macrophage fusion (TMF) cells were identified by blinded analyses. Screening patients underwent a median of two LDCTs (range, 1-4) with a median surveillance time of 30 (range, 11-50) months. RESULTS: In the validation set of 37 Lung-RADS 4 patients, all circulating cellular biomarker counts (P < .005; Wilcoxon test) and positivity rates were significantly higher in 23 biopsy-proven NSCLC patients (CTCs: 23 of 23 [100%], CTC clusters: 6 of 23 [26.1%], and TMF cells: 15 of 23 [65.2%]) than in 14 patients with biopsy-proven benign nodules (6 of 14 [42.9%], 0 of 14 [0%], and 2 of 14 [14.3%]). On the basis of cutoff values from the training set, logistic regression with receiver operating characteristic and area under the curve analyses demonstrated that CTCs (sensitivity: 0.870, specificity: 1.0, and area under the curve: 0.989) and TMF cells (0.652; 0.880; 0.790) complement LDCT in diagnosing NSCLC in Lung-RADS 4 patients. CONCLUSION: Cellular liquid biomarkers have a potential to complement LDCT interpretation of suspicious Lung-RADS 4 nodules to distinguish NSCLC from benign lung nodules. A future prospective, large-scale, multicenter clinical trial should validate the role of cellular liquid biomarkers in improving diagnostic accuracy in high-risk patients with Lung-RADS 4 nodules.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Lesões Pré-Cancerosas , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Detecção Precoce de Câncer/métodos , Humanos , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico , Macrófagos/patologia , Células Neoplásicas Circulantes/patologia , Tomografia Computadorizada por Raios X/métodos
11.
Mol Cancer ; 21(1): 73, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279152

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) are liquid biopsies that represent micrometastatic disease and may offer unique insights into future recurrences in non-small cell lung cancer (NSCLC). Due to CTC rarity and limited stability, no stable CTC-derived xenograft (CDX) models have ever been generated from non-metastatic NSCLC patients directly. Alternative strategies are needed to molecularly characterize CTCs and means of potential future metastases in this potentially curable patient group. METHODS: Surgically resected NSCLC primary tumor tissues from non-metastatic patients were implanted subcutaneously in immunodeficient mice to establish primary tumor patient-derived xenograft (ptPDX) models. CTCs were isolated as liquid biopsies from the blood of ptPDX mice and re-implanted subcutaneously into naïve immunodeficient mice to generate liquid biopsy CTC-derived xenograft (CDX) tumor models. Single cell RNA sequencing was performed and validated in an external dataset of non-xenografted human NSCLC primary tumor and metastases tissues. Drug response testing in CDX models was performed with standard of care chemotherapy (carboplatin/paclitaxel). Blockade of MYC, which has a known role in drug resistance, was performed with a MYC/MAX dimerization inhibitor (10058-F4). RESULTS: Out of ten ptPDX, two (20%) stable liquid biopsy CDX mouse models were generated. Single cell RNA sequencing analysis revealed an additional regenerative alveolar epithelial type II (AT2)-like cell population in CDX tumors that was also identified in non-xenografted NSCLC patients' metastases tissues. Drug testing using these CDX models revealed different treatment responses to carboplatin/paclitaxel. MYC target genes and c-MYC protein were upregulated in the chemoresistant CDX model, while MYC/MAX dimerization blocking could overcome chemoresistance to carboplatin/paclitaxel. CONCLUSIONS: To overcome the lack of liquid biopsy CDX models from non-metastatic NSCLC patients, CDX models can be generated with CTCs from ptPDX models that were originally established from patients' primary tumors. Single cell analyses can identify distinct drug responses and cell heterogeneities in CDX tumors that can be validated in NSCLC metastases tissues. CDX models deserve further development and study to discover personalized strategies against micrometastases in non-metastatic NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Animais , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Carcinogênese , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Modelos Animais de Doenças , Xenoenxertos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Células Neoplásicas Circulantes/patologia , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico
12.
FASEB J ; 36(4): e22250, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35294071

RESUMO

Combination therapy represents an effective therapeutic approach to overcome hepatocellular cancer (HCC) resistance to immune checkpoint blockade (ICB). Based upon previous work demonstrating that nanoliposome C6-ceramide (LipC6) not only induces HCC apoptosis but also prevents HCC-induced immune tolerance, we now investigate the potential of LipC6 in combination with ICB in HCC treatment. We generated orthotopic HCC-bearing mice, which have typical features in common with human patients, and then treated them with LipC6 in combination with the antibodies (Abs) for programmed cell death protein 1 (PD-1) or cytotoxic T-lymphocyte antigen 4 (CTLA4). The tumor growth was monitored by magnetic resonance imaging (MRI) and the intrahepatic immune profiles were checked by flow cytometry in response to the treatments. Realtime PCR (qPCR) was used to detect the expression of target genes. The results show that LipC6 in combination with anti-CTLA4 Ab, but not anti-PD-1 Ab, significantly slowed tumor growth, enhanced tumor-infiltrating CD8+ T cells, and suppressed tumor-resident CD4+ CD25+ FoxP3+ Tregs. Further molecular investigation indicates that the combinational treatment suppressed transcriptional factor Krüppel-like Factor 2 (KLF2), forkhead box protein P3 (FoxP3), and CTLA4. Our studies suggest that LipC6 in combination with anti-CTLA4 Ab represents a novel therapeutic approach with significant potential in activating anti-HCC immune response and suppressing HCC growth.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos , Antígeno CTLA-4 , Carcinoma Hepatocelular/metabolismo , Ceramidas , Fatores de Transcrição Forkhead/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos
13.
Semin Cancer Biol ; 83: 377-383, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34182142

RESUMO

The epigenetic regulation of immune response involves reversible and heritable changes that do not alter the DNA sequence. Though there have been extensive studies accomplished relating to epigenetic changes in cancer cells, recent focus has been shifted on epigenetic-mediated changes in the immune cells including T cells, Macrophages, Natural Killer cells and anti-tumor immune responses. This review compiles the most relevant and recent literature related to the role of epigenetic mechanisms including DNA methylation and histone modifications in immune cells of wide range of cancers. We also include recent research with respect to role of the most relevant transcription factors that epigenetically control the anti-tumor immune response. Finally, a statement of future direction that promises to look forward for strategies to improve immunotherapy in cancer.


Assuntos
Epigênese Genética , Neoplasias , Metilação de DNA , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/terapia
14.
Transl Oncol ; 15(1): 101262, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34768100

RESUMO

Pancreatic cancer (PaC) is resistant to immune checkpoint therapy, but the underlying mechanisms are largely unknown. In this study, we have established four orthotopic PaC murine models with different PaC cell lines by intra-pancreatic inoculation. Therapeutic examinations demonstrate that only tumors induced with Panc02-H7 cells respond to αPD-1 antibody treatment, leading to significantly reduced tumor growth and increased survival in the recipient mice. Transcriptomic profiling at a single-cell resolution characterizes the molecular activity of different cells within tumors. Comparative analysis and validated experiments demonstrate that αPD-1-sensitive and -resistant tumors differently shape the immune landscape in the tumor microenvironment (TME) and markedly altering effector CD8+ T cells and tumor-associated macrophages (TAMs) in their number, frequency, and gene profile. More exhausted effector CD8+ T cells and increased M2-like TAMs with a reduced capacity of antigen presentation are detected in resistant Panc02-formed tumors versus responsive Panc02-H7-formed tumors. Together, our data highlight the correlation of tumor-induced imbalance of macrophages with the fate of tumor-resident effector CD8+ T cells and PaC response to αPD-1 immunotherapy. TAMs as a critical regulator of tumor immunity and immunotherapy contribute to PaC resistance to immune checkpoint blockade.

15.
Sci Rep ; 11(1): 16685, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404819

RESUMO

Microfluidics have been applied to filtration of rare tumor cells from the blood as liquid biopsies. Processing is highly limited by low flow rates and device clogging due to a single function of fluidic paths. A novel method using multifunctional hybrid functional microposts was developed. A swift by-passing route for non-tumor cells was integrated to prevent very common clogging problems. Performance was characterized using microbeads (10 µm) and human cancer cells that were spiked in human blood. Design-I showed a capture efficiency of 96% for microbeads and 87% for cancer cells at 1 ml/min flow rate. An improved Design-II presented a higher capture efficiency of 100% for microbeads and 96% for cancer cells. Our method of utilizing various microfluidic functions of separation, bypass and capture has successfully guaranteed highly efficient separation of rare cells from biological fluids.


Assuntos
Separação Celular/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Contagem de Células , Linhagem Celular Tumoral , Desenho de Equipamento , Humanos , Células Neoplásicas Circulantes/patologia
16.
Transl Lung Cancer Res ; 10(7): 3226-3235, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34430360

RESUMO

BACKGROUND: Lung cancer metastases to the breast are less common and consequently have received much less attention in clinical practice. The purpose of this study was to provide a better understanding of clinical, ultrasonographic, and immunohistochemical features of breast metastases from primary lung cancer. METHODS: This retrospective case series included patients with breast metastases from primary lung cancer between January 2012 and December 2020. Clinical features, ultrasonographic characteristics, and immunohistochemical findings were evaluated in this analysis. RESULTS: In all, 7 cases (mean ± standard deviation age: 57.4±8.3 years; range, 49-70 years) were evaluated. The maximum size of breast lesions in 6 cases ranged from 1.2 to 4.5 cm, while 1 case showed a diffused pattern. Ultrasound features of breast metastases from lung cancer were irregular (5/7, 71.4%), indistinct (6/7, 85.7%), hypoechoic (7/7, 100.0%), and parallel (6/7, 85.7%) masses without calcification. Immunohistochemical staining test was positive for thyroid transcription factor 1 (TTF-1) in all patients (7/7, 100.0%), 3 cases (3/5, 60.0%) were negative for p63, 5 cases (5/5, 100.0%) were positive for cytokeratin 7 (CK7), 4 cases (4/5, 80.0%) were positive for napsin A. CONCLUSIONS: The ultrasonographic features of lung metastases to the breast are clinically important to understand. A known history of the primary lung cancer is of great importance when evaluating patients with a breast nodule. The presence of an ipsilateral lung cancer, breast nodule and axillary lymphadenopathy should be considered with pathological and immunohistochemical data to differentiate breast metastases from a primary breast malignancy in this setting.

17.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946558

RESUMO

Colorectal cancer (CRC) remains one of the deadliest malignancies worldwide despite recent progress in treatment strategies. Though immune checkpoint inhibition has proven effective for a number of other tumors, it offers benefits in only a small group of CRC patients with high microsatellite instability. In general, heterogenous cell groups in the tumor microenvironment are considered as the major barrier for unveiling the causes of low immune response. Therefore, deconvolution of cellular components in highly heterogeneous microenvironments is crucial for understanding the immune contexture of cancer. In this review, we assimilate current knowledge and recent studies examining anti-tumor immunity in CRC. We also discuss the utilization of novel immune contexture assessment methods that have not been used in CRC research to date.


Assuntos
Neoplasias Colorretais/imunologia , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Biologia Computacional , Humanos , Imunidade , Vigilância Imunológica , Imunoterapia , Microambiente Tumoral
18.
J Biomed Inform ; 118: 103792, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33915273

RESUMO

Enabling precision medicine requires developing robust patient stratification methods as well as drugs tailored to homogeneous subgroups of patients from a heterogeneous population. Developing de novo drugs is expensive and time consuming with an ultimately low FDA approval rate. These limitations make developing new drugs for a small portion of a disease population unfeasible. Therefore, drug repositioning is an essential alternative for developing new drugs for a disease subpopulation. This shows the importance of developing data-driven approaches that find druggable homogeneous subgroups within the disease population and reposition the drugs for these subgroups. In this study, we developed an explainable AI approach for patient stratification and drug repositioning. Contrast pattern mining and network analysis were used to discover homogeneous subgroups within a disease population. For each subgroup, a biomedical network analysis was done to find the drugs that are most relevant to a given subgroup of patients. The set of candidate drugs for each subgroup was ranked using an aggregated drug score assigned to each drug. The proposed method represents a human-in-the-loop framework, where medical experts use the data-driven results to generate hypotheses and obtain insights into potential therapeutic candidates for patients who belong to a subgroup. Colorectal cancer (CRC) was used as a case study. Patients' phenotypic and genotypic data was utilized with a heterogeneous knowledge base because it gives a multi-view perspective for finding new indications for drugs outside of their original use. Our analysis of the top candidate drugs for the subgroups identified by medical experts showed that most of these drugs are cancer-related, and most of them have the potential to be a CRC regimen based on studies in the literature.


Assuntos
Inteligência Artificial , Reposicionamento de Medicamentos , Biologia Computacional , Humanos , Bases de Conhecimento , Medicina de Precisão
19.
Front Cell Dev Biol ; 9: 647387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763427

RESUMO

Pancreatic cancer (PC) is one of the most lethal human malignancies without effective treatment. In an effort to discover key genes and molecular pathways underlying PC growth, we have identified LIM domain only 7 (LMO7) as an under-investigated molecule, which highly expresses in primary and metastatic human and mouse PC with the potential of impacting PC tumorigenesis and metastasis. Using genetic methods with siRNA, shRNA, and CRISPR-Cas9, we have successfully generated stable mouse PC cells with LMO7 knockdown or knockout. Using these cells with loss of LMO7 function, we have demonstrated that intrinsic LMO7 defect significantly suppresses PC cell proliferation, anchorage-free colony formation, and mobility in vitro and slows orthotopic PC tumor growth and metastasis in vivo. Mechanistic studies demonstrated that loss of LMO7 function causes PC cell-cycle arrest and apoptosis. These data indicate that LMO7 functions as an independent and unrecognized druggable factor significantly impacting PC growth and metastasis, which could be harnessed for developing a new targeted therapy for PC.

20.
Ann Thorac Surg ; 111(4): e257-e258, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32890485

RESUMO

A fistula between a Zenker's diverticulum and the trachea has only been reported once, in 1983. Here, we report a case of a fistula between a large Zenker's diverticulum and the trachea with complete occlusion of the esophagus. The fistula was repaired, first by an esophageal myotomy, followed by proximal resection of the diverticulum, completion of the esophageal myotomy, transection of the fistula, and repair of the trachea. The surgical repair provided complete resolution of symptoms without complications.


Assuntos
Estenose Esofágica/complicações , Fístula/diagnóstico , Doenças da Traqueia/etiologia , Divertículo de Zenker/complicações , Idoso , Doenças do Esôfago/diagnóstico , Doenças do Esôfago/etiologia , Estenose Esofágica/diagnóstico , Esofagoscopia , Feminino , Fístula/etiologia , Humanos , Tomografia Computadorizada por Raios X , Doenças da Traqueia/diagnóstico , Divertículo de Zenker/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA